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Abstract.

As the current fleet of meteorological satellites age, the accuracy of the imagery sensed on a

spectral channel of the image scanning system is continually and progressively degraded by noise.

In time, that data may even become unusable. We describe a novel approach to the reconstruction

of the noisy satellite imagery according to empirical functional relationships that tie the spectral

channels together. Abductive networks are applied to automatically learn the empirical functional

relationships between the data sensed on the other spectral channels to calculate the data that

should have been sensed on the corrupted channel. Using imagery unaffected by noise, it is

demonstrated that abductive networks correctly predict the noise-free observed data.

1 Introduction.

The fleet of four polar orbiting meteorological satellites currently operated by the National

Atmospheric and Oceanic Administration (NOAA) carries a multi-spectral sensing system for

imaging the Earth. This system, the Advanced Very High Resolution Radiometer (AVHRR),

measures irradiances in five narrow spectral bands ranging from the visible to the infrared (IR)

parts of the electromagnetic spectrum. The system is described in section 2 below. Suffice it to

say here that by virtue of the high resolution of the instrument, a wealth of data is available.

It has been noted that one of the five spectral channels of the AVHRR (channel 3) is

particularly susceptible to noise and its accuracy degrades with age, perhaps to the point where the

data is unusable (Ref. 1). The possibility also exists that some of the archived AVHRR imagery

from the older satellites that have been replaced with the current generation of spacecraft may also

be of questionable quality.

The problem faced is the use of archived and real-time satellite imagery which may be

partially corrupted by noise. One approach is to correct the data to its true but a priori unknown

value. Because the channel is continually and progressively denigrated by noise, any correction

scheme requires constant maintenance.
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An alternative approach, pursued in study described here, is to replace the data measured on

the noisy channel with data constructed from the other four spectral channels. Our approach relies

on a technique called abductive networks that automatically discovers the networking between the

spectral channels that are embedded in the measured data. In this way the noisy satellite imagery

is reconstructed according to empirical functional relationships that tie the spectral channels

together.

Here we describe the application of a proprietary tool for creating abductive networks to the

modelling of the AVHRR. Specifically, channel 3 is modelled as the output calculated from the

empirical inputs of the other four spectral channels. Our approach was exercised on imagery
collected with the AVHR on NOAA-11, which is not as yet seriously compromised by noise.

The data predicted for channel 3 with the other channels as inputs to the network that was created

is then statistically compared to the data actually observed. The result was that the network was

highly successful at simulating the observed output.

The next section provides a short description of the AVHRR. Section 3 gives an overview of

abductive technology. Section 4 describes the application of abductive networks to satellite

imagery with the objective of uncovering the effective relationship between the imagery sensed in

an intermediate spectral band and the imagery sensed in the neighboring bands. Our conclusions,

principally that abductive networks show great promise for reconstructing noisy satellite imagery,

are presented in section 6.

2 A Brief Description of the AVHRR.

The AVHRR currently flown aboard the NOAA polar orbiting meteorological satellites is a

downward-pointing cross-track scanning system. It makes radiometric measurements in five

spectral channels: two in the visible and adjacent near-infrared (near-l'R) part of the spectrum

(channels 1 and 2) and three in the IR part (channels 3, 4, and 5). The spectral band widths, in

microns (I.tm), are summarized in Table 1. For NOAA-10 only, the spectral band of channel 4 is

10.50 - 11.50 _tm, and channel 5 output is a repeat of channel 4. The field of view of each

channel is approximately 1.4 milliradians leading to a nadir resolution of about 1.1 km (for a

nominal satellite altitude of 833 kin). There are 2048 pixels per scan line, where each pixel covers

about 2 steradians.

Table 1. Spectral band widths of the AVHRR.

Channel # Band Width (I.tm)
1 0.580- 0.680

2 0.725- 1.100
3 3.550- 3.930

4 10.300 - 11.300
5 11.500 - 12.500
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The analogue data output from the sensors is digitized on board the satellite. The IR channels

are calibrated in flight using a view of a stable black body and space as a reference. No in flight

visible channel calibration is performed, although the space view is available as a reference point.

The radiometer data collected by channel 3 of each NOAA satellite have been very noisy due

to sensor problems and may be eventually unusable (Ref. 1). This is especially true when the

satellite is in daylight. (Of course, channels 1 and 2 are blank for nocmmai views.)

The normal operating mode of the AVHRR scanning system is to capture a scan line in a

buffer and continuously broadcast the digital data in a wide beam aimed at the Earth. The direct

transmission mode is called High Resolution Picture Transmission (HRFr). Ground processing

of the HRPT consists of its calibration, earth location, and breakout of the individual sensor

channels.

3 An Introduction to Abductory Induction and Abductive Networks.

Abductive reasoning, or abduction, is defined as the process of reasoning under conditions

of uncertainty from general principles and initial facts to new facts (Ref. 2). Abduction differs

from deduction, in which all principles and facts are assumed to be known with complete or

assumed certainty.

Induction is the process of reasoning from specific facts to general principles. This

reasoning process is handles the many real-world situations that are rich in empirical data but lack

sufficient conceptual understanding to unify that data into a coherent, accurate view of the world.

Ideally, the facts supplied to an inductive argument are known with absolute certainty. In the real

world, however, the facts are contaminated with uncertainties. Uncertainty arises, for example,

from imprecise, unreliable or incomplete information. Even with indisputable information,

uncertainty arises due to a lack of complete and thorough knowledge and understanding of the

situation. Then the generalities inductively reasoned from those facts must themselves be

uncertain. As a result, the reasoning itself contains uncertainty. Abduction is the reasoning

process that incorporates this realistic view of uncertainty.

A practical implementation of abductive reasoning uses numeric functions and measures,

called abductive measures, to convey the inherent importance of a single fact or piece of

information (Ref. 2). Abductive measures represent relationships between facts. These should

be viewed as working, rather than 'true', relationships in the sense that they predict nature

correctly even if for the wrong reasons.

Abductive measures arc used to decompose complex problems into subproblems in a process

called chunking. Here a limited number of facts, or types of facts, arc dealt with at a time. They

are summarized in terms of single abductive measures. The chunks are then united by

appropriately combining their respective abductive measures.

Abductory induction is the process of creating general principles from databases of empirical

observations. Abductory induction is applied to create an abductory model of the process
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described implicitly by the database by formulating, or at least approximating, the relationship

between the database variables in terms of the contained data. The abductory model is most

conveniently posed as an unstructured network or a cascade of mathematical equations. This

adaptability property makes abductory induction particularly well suited to unsupervised machine

learning. The problem immediately posed is determining the appropriate functions, and hence the

layout of the network, out of an infinite number of candidates, that best describes the data.

Assuming a model structure, as is done in regression techniques, may result in poor fits to the

data just because that specific structure is not present. An alternative is to model the data with a

very general multinomial. Within very broad assumptions any arbitrary function may be

approximated by a polynomial (i.e., a truncated Taylor series); the accuracy of the approximation

is directly related to the number of terms retain_,_at is, the degree of the polynomial. However

the many coefficients needed for even a small set of variables makes this approach intractable for

degrees much above 2.

A practical solution to modelling the database in terms of its uncertain structure is to apply the

chunking concept and split the input variables among several groups. The groups are collectively

input to the individual nodes of an incipient network and the relations among them are
summarized in terms of an abductive measure. These results are then passed on to the next layer

of the evolving network. The labor is substantially reduced because only the model associated

with a single node must be determined at any single time.

Abductive networks are networks of functional nodes (Ref. 3). Neural networks may be

considered a special class of biologically-motivated abductive networks. Incorporating the

chunking concept, a very effective algorithm for creating abductive networks utilizes polynomial

equations (of moderate order) for the abductive measures. Given a database of example situations

about a problem consisting of a representative set of inputs and outputs, an abductive network can

be used to fit the best polynomials relating the variables, node by node, cascading layer to layer.

Specifically, inputs to each node are processed and output, along with the original input variables

to the nodes in subsequent layers of the network. The result is a compact representation of the

interactions between the variables as evidenced in the massive amount of empirical data.

The Abductory Induction Mechanism (AIM TM) is proprietary software of AbTech

Corporation for implementing abductory induction for the automatic and unsupervised creation of

abductive networks (Ref. 4). The network mated by AIM is a robust and efficient representation

of the relationships existing between the variables contained in the database. AIM uses

polynomials of up to degree 3; the polynomials contain cross-terms to allow interaction between

node inputs. Not all terms may be included in specific nodal polynomials because AIM, in a

process called carving, neglects terms which do not contribute significantly. The network size,

chunking and connectivity (between chunks and/or inputs), and coefficient values are all

determined automatically by AIM. Networks are created from layer to layer until the network

model ceases to be improved according to a modeling criterion. The criterion assures that as

accurate a network as possible is created without overfitting the data (that is, tailoring the network

specifically to the supplied database).



4 An Application of AIM to the AVHRR Calibrated Channel Output.

It was mentioned above that, for the older satellites in the NOAA fleet, channel 3 is very

noisy, to the point of being unusable without significant suppression of the noise effects. The

objective is to reconstruct channel 3 from the other four spectral channels.

The AVHRR instrument scans the scene pixel by pixel in all five spectral channels
simultaneously. Of course, the sensors will make different irradiance measurements in the

different spectral bands. However, in a pixel, excluding any possible misalignment among the
five fields of view, the channel 3 irradiance must be related to the irradiances measured on the

other spectral channels. That relation is a complex problem in radiative transfer for both solar and

terrestrial photons. An alternative to a possibly intractable theoretical analysis is to use a satellite

imagery database consisting of AVHRR calibrated output to uncover empirical relationships
between channel 3 and the other channels contained in the data.

The SAIC satellite ground station at received imagery from the NOAA- 11 satellite for a pass

over the eastern United States on 25 February 1994 around 2139 UTC (16:39 EST). NOAA-11

was launched September 24, 1988; as the second oldest satellite in current operation, it is two

years older than NOAA-10 and nearly four years older than NOAA-9. The AVHRR on NOAA-

11 has not yet evidenced severe denigration of any of its spectral irradiance measurements. The

downlinked data was calibrated, rectified, and broken out into its individual channels, which were

separately saved to file. The satellite image contained in excess of 1000 scan lines. A 500 line by

500 pixel box was extracted from the southwest corner of the image and sampled for every other

scan line, so that the channel databases each contained 250 scan lines nominally separated by 2.2
km in the direction of the satellite track. The data for each individual channel were then ordered

by pixel, for a total of 125000 pixels, in a single file for each of the five channels. Each pixel is

considered as an individual observation containing five values, one for each of the spectral
channels.

The AIM software package was applied to the image box. Memory limitations in AIM

prevented use of the entire database because AIM is limited to only 8000 observations. As a

result, four 8000-pixel strips were extracted from the image box. Specifically, the extracted

image box was divided into four sections in the along-track direction. Each section of the image

box was sampled in blocks of 8000 pixels such that each block contains sixteen sequential 500-

pixel neighboring scan lines; the blocks are spatially coherent. A fifth block was created by

assembling four adjacent scan lines from each of the four image strip. Note that while the

quarters of this image block are spatially coherent, the quarters are spatially decoupled from each
other.

Channels 1, 2, 4, and 5 were designated as the network inputs and channel 3 was designated

as the network output. Individual networks were created for each of the five image blocks. The

networks were created on a Macintosh SE/30. The time required for forming the network

obviously depended on network complexity. Creation times ranged from about 20 minutes up to

nearly an hour. Each network was then evaluated against both its own creating image block and

the other four image blocks. The evaluation consisted of statistically comparing the channel 3
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output predicted by the network to the channel 3 data actually observed.

All of the networks performed well on sdf-evaluation. Generally the networks degraded

with spatial distance of the evaluating image block from the network-forming image blocL that is,

with progressive spatial decoupling between the image blocks. The exception was the AIM
network created with image block 5 (the four-strip composite through the 500 line by 500 pixel

image box). That network, presented in figure 1, generally outperformed all the other networks,

except for their own self-evaluation.

As can be seen in figure 1, the network created with image block 5 is a four-layer network of

feed-forward elements, that is, the network cascades from the raw input variables on the left to the

single output variable on the right. The inputs are the calibrated AVHRR data from channels 1, 2,

4, and 5. Note however that only channels 1, 4, and 5, referred to as chl, ch4, and ch5,

respectively, were used. The final output is the network-predicted (calibrated) response for
AVHRR channel 3, referred to as ch3. Channel 2 was carved from the inputs because of its

partial redundancy, most likely with channel 1. The numbers and types of network elements, the

element polynomial functions, and their connectivity are learned abductively (induction under

uncertainty). The coefficients of the element functions are determined by multiple linear

regression of terms up to power three. The structure of the network is determined according to a
set of rules and heuristics that are an inherent part of the AIM network creation strategy. The best

network, in terms of its structure, element types, coefficients, and connectivity, is found

automatically by minimizing a modeling criterion that seeks the most accurate network possible

within acceptable tolerance (this avoids creating a network tailored to only the training data).

In figure 1, the open circles following the inputs are 'normalizers'. They transform the the

original input variables to standard variables with zero mean and unit variance. This assures that

all input variables will be fairly represented in the network. The boxes labelled double and triple

are elements whose name is based on the number of inputs from the previous layer. These

elements are described by fairly general third-order polynomials. Doubles and triples may have

some significant explicit cross-product terms, allowing interaction among the node input

variables. Note that the output of any given element can feed subsequent layers as can the original

variables. The open circle preceding the network output (ch3) is a so-called 'unitizer'. A unitizer

converts the standardized range of the intermediate network ouput to the units of the output

variable used to create the network; it is an inverse normalizer.

Figure 2 plots the observed output of channel 3 in image block 5 against the output predicted

for channel 3 using the data measured on the other channels in block 5 as input to the network

created with block 5. This is a self-evaluation of the network created with image block 5. The

line with unit positive slope indicates perfect correlation between the observed and the predicted

channel 3 output. The overwhelming bulk of the 8000 network-predicted channel 3 values

straddle the line, indicating the high quality of the network fit to the observations. The correlated

data appear to group predominantly into two large clusters hugging the unit line (the upslope

cluster being the more massive of the two). Apparently the observed channel 3 data is inherently

bimodal; this bimodal distribution is captured in the network predictions. Figure 3 displays the

normalized errors for this self evaluation of the block 5 network. Normalized error is defined as
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the difference between the observed and predicted values for the channel 3, normalized by the

observed value. As in the previous figure, the normalized errors group predominantly into two

large clusters hugging the zero-error line. The larger of the two clusters sits over the mean of the

channel 3 observations for block 5 (2324.3). The normalized errors are mainly within +5%, and

nearly evenly dispersed around the zero-error line. As the observed values depart from the block

mean, error grows, implying that the network performance degrades. Even at its worst,

however, the normalized error is mostly within about 15%.

Figure 4 plots the observed output of channel 3 in image block 3 against the output predicted

for channel 3 using the data measured on the other channels in block 3 as input to the network

created with block 5. The perfect correlation line with unit positive slope is displayed for

comparison. Here, the agreement between the predicted and the observed values is excellent, as

evidenced by the near perfect collapse onto the 45 ° line. The normalized errors between the block

5 network predictions of channel 3 for block 3 and the actual block 3 observations are shown in

figure 5. The normalized errors are strongly clustered about the actual block mean of 2316.9, and

are about 1%. Note that in general the network tends to very slightly overpredict the channel 3

output. The strong clustering of the normalized errors reflects the shorter range and tighter

clustering of the block 3 data about its mean (standard deviation = 27.0 ~ 1.2% of the mean).

5 Conclusions.

We have demonstrated that that abductive networks are very successful in modelling the

measurements collected with the AVHRR in our specific test case. The abductive networks

created with AIM create reliable and compact representations of the AVHRR spectral channels in

terms of diagnosing the empirical relationship between channel 3 and the other four spectral

channels. The network trained with the composite database selectively extracted from the imagery

so as to have only partial spatial coherence generally outperformed the networks trained with

spatially coherent databases, except perhaps for the self-evaluation. This indicates some near-

universality exists in the relationship between the channels, which may be found by the

appropriate sampling of the satellite imagery. The general use of abductive networks for

modelling the AVHRR towards reconstructing the noisy data collected on its channel 3 shows

great promise.

Another possible use for abductive networks is as a quality-control monitor. Specifically, the

real-time degradation of channel 3 can be measured by periodically comparing its observations to

network predictions. For example, the channel may be considered corrupted if the average error,

say, between the observed and the predicted channel 3 output through an image (or a piece of an

image) exceeds some established threshold.
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